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ABSTRACT

A new method designated as the mean-to-mean ratio (MMR) test is proposed
for the detection of nonhomogeneities in a radar’s Constant False Alarm Rate
(CFAR) reference window. No a priori knowledge of the nonhomogeneity topol-
ogy is assumed. Analysis using the Monte-Carlo method based on Rayleigh
clutter and Swerling I target models is presented. Target-like interferences
which seriously degrade the detection performance of the cell-averaging CFAR
detector can be detected with a higher probability by the MMR test.
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Nonhomogeneity Detection in CFAR Reference Windows
Using the Mean-to-Mean Ratio Test

Executive Summary

In radar Constant False Alarm Rate (CFAR) signal processing, the cell-averaging CFAR
(CA-CFAR) is the most popular algorithm employed in practical radar detection. As the
CA-CFAR detection performance degrades seriously when the reference window used in
the estimation of the mean noise level is contaminated by nonhomogeneous samples, many
modifications have been proposed. Each of these modified CFAR algorithms has its own
advantages and drawbacks, depending on the topology of the nonhomogeneity. They all,
nevertheless, share the same design methodology in that an attempt is made to censor
out the inappropriate reference samples. Since censoring operations result in a reduced
number of reference samples, a higher detection loss is inevitable. Therefore, a censoring
operation should only be performed when it is absolutely necessary.

The focus of this report is on detecting the presence of nonhomogeneous samples in the
reference window prior to censoring, which is an important test that receives less atten-
tion in the literature. Based on the existence of rare events, a nonhomogeneity detection
scheme designated as the mean-to-mean ratio (MMR) test is proposed. No a priori knowl-
edge of the nonhomogeneity topology is assumed. Results obtained from Monte-Carlo
simulations based on Rayleigh clutter and Swerling I target models are presented.

When being implemented in parallel with a CA-CFAR detector, target-like samples
that are not detected by the CA-CFAR and yet have a deleterious effect on CA-CFAR
performance can be detected with higher probabilities by the MMR test.
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1 Introduction

A radar detection process involves testing whether the signal level in the resolution cell
under test exceeds a detection threshold. In modern radar systems, the detection thresh-
old is adaptively adjusted according to the background clutter and noise levels using a
constant false alarm rate (CFAR) processor [1].

The most basic form of the adaptive threshold processor is the well-known cell-averaging
CFAR (CA-CFAR) [2]. As shown in Figure 1, a CA-CFAR processor receives input from
the square law detected video range samples (also known as range cells) which consists
of the sample x0 in the test cell (where a decision on target presence or absence is to be
made) and 2N reference samples x1, x2,. . . , x2N in the neighbourhood of the test cell. A
few immediate neighbouring cells known as guard cells are excluded to prevent possible
power spill-over from the test cell. A decision on whether a target is present or absent in
the test cell is performed by verifying the following two alternative hypothesises:

x0

H1
≥
<
H0

T, (1)

i.e., either hypothesis H1 of target presence is declared to be true if the sample y in the
test cell is greater than an adaptive threshold T , or hypothesis H0 of target absence is
verified otherwise. The threshold T is formed by multiplying the interference estimate
(which is the sample mean of the 2N reference samples) with a constant α (the value of
which is determined by the required false alarm rate).

Guard cells

CA-CFAR
detection threshold, T

Test cell

Reference cells

x1 ··· xl · x0 · x2N···

Reference cells

Σ Σ

α

xl+1

∑N2
1

Figure 1: Formation of a CA-CFAR detection threshold.

Under the condition that the sample in each reference cell is independent and identically
distributed (iid) and is governed by the exponential distribution, the performance of the
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CA-CFAR processor is optimal (in the sense that the detection probability is maximised
for a given false alarm rate) when the number of reference cells is large [2]. However, there
are many detection problems associated with the CA-CFAR algorithm if the assumption of
identical statistics of the reference cells is not valid [3]. In practice, there are two common
situations when such an assumption no longer holds: (i) there is a clutter edge (e.g., at
the border of land and sea), where the energy of interference changes, and (ii) there is an
outlier, e.g., a clutter spike, an impulsive interference, or another interfering target. These
can result in the masking of weaker targets near stronger targets, excessive false alarms
at clutter transitions, and missing of targets near clutter edges.

In order to adapt to the presence of multiple targets and clutter power transitions
within the CFAR window, there are two main streams of approaches in the CFAR litera-
ture.

The first stream focuses on the modifications of the conventional CA-CFAR [4]. In
general, these modifications can be classified into two groups, depending on whether or
not the algorithms rely on the ordering of the reference samples for sample selection. The
group of CFAR algorithms that do not use rank ordering includes the smaller-of CFAR,
which is designed to improve target detection in the presence of multiple targets by split-
ting the reference window into a leading part and a lagging part and then selecting the
part with a smaller sample sum for threshold computation [5]; the greater-of CFAR which
is designed to minimise the false alarm rate at a clutter edge (by selecting the part with
a greater sample sum) [6]; the excision CFAR in which those samples with amplitudes
greater than an excision threshold will not be used for detection threshold computation [7],
[8], [9]; the switching CFAR where the sample in the test cell is used to select appropriate
reference data [10], [11], etc. The group of CFAR algorithms that rely on rank ordering
includes the order statistic CFAR, where the interference estimate is given by the am-
plitude of the kth ordered reference sample [12]; the censored mean level detector CFAR,
where the K largest ranked samples are discarded and the remaining samples are used
for interference estimation via the cell averaging method [13]; the trimmed mean CFAR
where the smallest 2N ranked samples are also discarded in addition to the K largest
ranked samples [14], etc. Each of the modified CFAR algorithms, however, has its own
advantages and drawbacks, depending on the operating environment and the statistical
model of both target and clutter returns. They all, nevertheless, have the same design
methodology in that a censoring operation is made to eliminate inappropriate reference
samples in a nonhomogeneous environment.

The second stream aims to either (i) combine the individual algorithms proposed in the
first stream in order to use their advantages in certain situations, or (ii) detect the presence
of nonhomogeneity in the CFAR window prior to applying suitable CFAR processing. For
instance, in [15], based on the detection of clutter power change in the CFAR window, an
adaptive censoring algorithm performed on a cell-by-cell basis and ordered reference sam-
ples was proposed. A somewhat similar cell-by-cell censoring algorithm without ordered
reference samples was discussed in [16]. These two algorithms do not rely on the distri-
bution of the nonhomogeneous samples in the reference window. In [17], a heterogeneous
clutter estimation algorithm based on a combination of hypothesis testing and maximum
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likelihood estimation procedures was proposed. In [18], a method for the detection of
clutter power transition in a CFAR window using the Mann-Whitney test was analysed.
In [19], the reference samples were first used to compute a second-order statistic and the
leading-lagging mean ratio. These computed data were then used to tailor the selection
of appropriate CFAR detectors. An underlying assumption in these works is that there is
homogeneity between two clutter changes.

Recently, a new approach for detecting nonhomogeneity in a CFAR window based on
the detection of rare events is proposed in [20]. This detection scheme is designated as
the mean-to-mean ratio (MMR) test, which is simple for implementation since no rank
ordering operation is required. Target-like interferences which seriously degrade the detec-
tion performance of a CA-CFAR can be detected with a higher probability by the MMR
test. This report is a solid consolidation of the work presented in [20]. The new materials
include a comparison with five other nonhomogeneity detection methods.

The focus of this report is on detecting the presence of nonhomogeneous samples in the
reference window prior to censoring, which is an important test that receives less atten-
tion in the literature. No a priori knowledge of the nonhomogeneity topology is assumed.
The report is structured as follows. The statistical models for targets and interferences in
radar detection is introduced in Section 2, while the nonhomogeneity detection problem is
formulated in Section 3. In Section 4, the rare event nonhomogeneity detection algorithm
using the MMR test is proposed. The results obtained from Monte-Carlo simulations are
then presented in Section 5, followed by the discussion in Section 6.

2 Target and Interference Models

Consider a generic CFAR processor that receives the sample x0 from the test cell where
a decision on target presence or absence is to be made and 2N reference samples from
the CFAR window Ψ = {x1, x2, . . . , x2N}. The following Swerling I targets in a Rayleigh
background model are considered [14].

Let Ω be the set consisting of the sample x0 in the test cell and 2N reference samples
in the CFAR window Ψ, i.e.,

Ω = {x0; Ψ} = {x0, x1, x2, . . . , x2N}, (2)

All samples in Ω are assumed to be statistically independent, and the amplitude of
each sample is described by the following exponential probability density function (pdf):

pz(z) =
1
λ
exp

(
− z
λ

)
, z ≥ 0, (3)

where:

• λ = λ0 if the sample is thermal noise only where λ0/2 is the thermal noise power;
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• λ = λ0(1 + σ) if the sample contains a target return with an average signal-to-noise
ratio (SNR) of σ;

• λ = λ0(1 + C) if the sample contains a clutter return with an average interference-
to-noise ratio (INR) of C.

As both clutter and target returns share the same pdf and the same power model, to
facilitate the notation, nonhomogeneity due to either secondary targets or clutter returns
is referred to as target-like nonhomogeneity.

3 The Nonhomogeneity Detection Problem

The problem of nonhomogeneity detection in Ω is to verify the following two alternative
hypothesises:

• H00: all samples in Ω are thermal noise only, or

• H11: there is at least one target-like sample in Ω.

Remark. Note that a censoring operation is only necessary when hypothesis H11 is
true. Furthermore, it is only when there are at least two target-like samples in Ω that a
censoring operation has to be performed. This can be explained as follows. Suppose that
there is only one target-like sample in Ω, then there are only two possibilities: either (i) the
sample in the test cell is the target-like sample while other samples in the CFAR window
are noise samples; or (ii) the sample in the test cell is noise only while one of the samples
in the CFAR window is target-like. In case (i) no censoring operation is required since all
samples in the CFAR window are noise only, whereas in case (ii) target is absent in the
test cell and therefore there is no detection loss if a censoring operation is not performed.

4 The Mean-to-Mean Ratio Test Algorithm

In this section, the mean-to-mean ratio test is proposed and the corresponding target-like
detector design procedure is presented.

4.1 The Mean-to-Mean Ratio Test for Target-like Detection

Let µ be the mean of the samples in Ω, i.e.,

µ =
1

2N + 1

2N+1∑
k=0

xk. (4)

Sorting Ω into the following two subsets:

Ω0 = {x ∈ Ω : x ≤ µ} (5)
Ω1 = {x ∈ Ω : x > µ} (6)
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i.e., Ω0 consists of the small samples that are not greater than their mean while Ω1 consists
of the large samples that are greater than their mean. Let µ0 and µ1 be the means of the
samples in Ω0 and Ω1, respectively.

Consider the following mean-to-mean ratio (MMR) test:

µ1

µ0
≥ T, (7)

where T is a constant greater than 1.

Denote EMMR(N,T ) as the event that the set Ω survives the MMR test (7), i.e.,

EMMR(N,T ) = {Inequality (7) is true} (8)

Denote the probability that event EMMR(N,T ) occurs when hypothesis H00 is true as:

FMMR = Prob
[
µ1

µ0
≥ T

∣∣∣∣H00

]
(9)

Let ε be a small positive number, for instance, equal to a CA-CFAR false alarm rate,
and Tε be a positive constant. Set Tε implicitly according to the following equation:

FMMR = Prob
[
µ1

µ0
≥ Tε

∣∣∣∣H00

]
= ε (10)

Equation (10) means that: if hypothesis H00 is true, then EMMR(N,Tε) is an event of
probability ε. Using the equivalent statements in mathematical logic: ”if A then B”
is equivalent to ”if not B then not A” [21], this is equivalent to: if EMMR(N,Tε) is
not an event of probability ε, then hypothesis H00 is not true, i.e., the fact that event
EMMR(N,Tε) occurs more frequently than the specified false alarm rate ε indicates that
there is at least one target-like sample in Ω.

In practice, it is not necessary to wait until event EMMR(N,Tε) occurs many times
to declare that H11 is true. Instead, at the first instance test (7) is passed with T = Tε,
the presence of at least one target-like sample in Ω can be deduced, since the probability
that all samples in Ω are thermal noise only is very small and equal to the CA-CFAR false
alarm rate ε as evident in (10).

Denote the probability that test (7) is passed with T = Tε when hypothesis H11 is true
as:

PMMR = Prob
[
µ1

µ0
≥ Tε

∣∣∣∣H11

]
(11)

The applicability of test (7) in deducing the presence of nonhomogeneity in Ω lies in the
fact that for a properly designed threshold T = Tε, FMMR is very small under hypothesis
H00 while PMMR is very large under hypothesis H11. This point will be elaborated further
in the following sections.

In summary, for a specified false alarm rate ε, an MMR detector has only one parameter
Tε to be designed. The design of Tε is as follows.
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4.2 MMR Detector Design Procedure

• Step 1. Given the size of Ω, plot FMMR as given in (9) over a range of T (e.g.,
T ∈ [1, 20] ) using Monte-Carlo method.

• Step 2. Select Tε based on the required false alarm rate ε and the result of Step 1.

Once the threshold Tε has been found, the nonhomogeneity detection algorithm is as
follows.

4.3 The MMR Detection Algorithm

Given the set Ω as in (2) and the threshold Tε:

• Step 1. Sort the samples of Ω as described in (5) and (6);

• Step 2. If the MMR test (7) is passed with T = Tε, then the presence of at least one
target-like sample in Ω is declared with a false alarm rate of ε.

5 Results

In this section, the use of the MMR test in detecting the presence of target-like samples in
a CFAR window is presented. Suppose that the MMR test is implemented in parallel with
a CA-CFAR detector which uses a CFAR window of 2N reference cells. The design of
the corresponding MMR test is first demonstrated, and its performance is then examined
based on three scenario studies. The purpose of these simulation studies is to demonstrate
that the MMR test complements the strength of a CA-CFAR detector, i.e., target-like
samples in the reference window, which are blind to the CA-CFAR and seriously degrade
CA-CFAR performance, can be detected with higher probabilities by an MMR detector.

Assume that target detection is performed over a range profile that consists of 128
range gates in total. Consider three CA-CFAR reference window sizes 2N=16, 24, and 32.
Corresponding to these CA-CFAR window sizes, the sizes of the set Ω are A = 2N+1=17,
25, and 33, respectively.

5.1 Design an MMR Detector

• Step 1. Using Monte-Carlo simulation based on the signal model described in Section
2 with 108 trials at each data point, FMMR given in (9) is plotted in Figure 2 for
T ∈ [1, 16].

• Step 2. Thresholds for the MMR test with different sizes of Ω and different rep-
resentative false alarm rates can be read from Figure 2 and are shown in Table
1.
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Figure 2: False alarm rates of the MMR detector for different sizes of Ω.

In order to demonstrate the use of the MMR test, suppose that 2N = 32 is the CA-
CFAR window size of interest, and the required false alarm rate is ε = 10−6. From Table
1, the MMR threshold corresponding to A = 2N + 1 = 33 at FMMR = 10−6 is Tε = 15.09.

Table 1: Thresholds for the MMR test.

Size of Ω, 2N + 1
17 25 33

10−4 17.75 13.13 11.31
FMMR 10−5 23.44 15.92 13.18

10−6 31.04 19.21 15.09

Let PCA be the CA-CFAR detection probability of the primary target in the test cell.
In the following scenario studies, PMMR given in (11) is computed using Monte-Carlo
simulations with 106 trials at each data point, whereas PCA is computed using the closed-
form formula presented in [14].

The following three scenarios are studied. Scenarios 1 and 2 represent the case when
the detection of the primary target is interfered with by other targets in the CFAR window.
In Scenario 1, the primary target and the interfering targets are assumed to have the same
signal strength. In Scenario 2, the primary target and the interfering targets are assumed
to have different signal strengths. Scenario 3 represents the case when detection of the
primary target is interfered with by the presence of a clutter edge.

5.2 Scenario 1

• The test cell contains a (primary) target of SNR σ.

UNCLASSIFIED 7
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• There are n target-like samples in the reference window Ψ, each of which has the
same SNR σ as that of the primary target. The set Ω then consists of m = n + 1
target-like samples.

PCA of the CA-CFAR detector using 2N = 32 reference samples at false alarm rate
ε = 10−6 is shown in Figure 3(a). It is evident that as the number of target-like samples
in the reference window increases, PCA deceases significantly and totally collapses when
n ≥ 9.

For the same scenario, when the designed MMR detector is implemented in parallel
with the CA-CFAR detector, PMMR given in (11) is shown in Figure 3(b). As the number
of target-like samples in the reference window increases from n=0 to 9, the number of
target-like samples in Ω increases from m = n+ 1=1 to 10. Unlike PCA, PMMR improves
and reaches its best performance at m=10. The dotted curve marks the homogeneous
PCA (i.e., with n=0).

When m continues to increase above 10, PMMR begins to decrease as shown in Figure
3(c). Even when half of the CFAR window is filled with target-like samples (m=17),
PMMR is still higher than the homogeneous PCA (marked by the dotted curve) in certain
SNR range.

0

0.5

1

P
C

A

0 5 10 15 20 25 30
0

0.5

1

SNR, σ (dB)

P
M

M
R

0

0.5

1

P
M

M
R

(a)

(b)

(c)

n=0
1

2

3
n=9

m=1
23

4

m=10

m=10
14

17 m=18, 21

Figure 3: PCA and PMMR with 2N = 32 at 10−6 false alarm rate for Scenario 1.

5.3 Scenario 2

• The test cell contains a (primary) target of SNR σ=20 dB.

• There are n target-like samples in the reference window Ψ, each of which has the
same INR C ∈ [-10 dB, 30 dB].
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As shown in Figure 4(a), the primary target detection probability PCA decreases when
the number of secondary targets and their INR increase. The critical region is between 10
dB and 20 dB in which PCA curves undergo the steepest roll-down. Unlike PCA, PMMR

only decreases slightly when C ∈ [-10 dB, 10 dB] and then increases when C ≥ 10 dB as
evident in Figure 4(b). As shown by the m=17 curve in Figure 4(b), even when target-like
samples of the same INR C=9 dB occupy up to half of the reference window, the MMR
detector still gives a 40% probability of detecting the presence of target-like samples in Ω.

-10 0 10 20 30
0.4

0.6

0.8

1

INR, C (dB)

P
M

M
R

0  

0.2
0.4
0.6
0.8

1

P
C
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n=1
2

3
n=9

16

(a)

(b)

m=2
3
4

m=10
17

Figure 4: PCA and PMMR with 2N = 32 at 10−6 false alarm rate for Scenario 2.

5.4 Scenario 3

Detection during clutter transition is now investigated. Consider the scenario in which
the CA-CFAR window slides along the range dimension and its right-hand side reaches a
clutter region. The number of target-like samples now increases from 1 to 16, i.e., until
the right-half CA-CFAR window is totally submerged in the clutter. Assume that:

• The test cell contains a (primary) target of SNR σ=20 dB.

• There are n clutter samples (n ∈ [1, 16]) in the reference window Ψ, each of which
has the same SNR C.

Figure 5 shows PCA and PMMR for 3 clutter power levels, namely, C=10 dB, 15 dB,
and 20 dB over the interval n ∈ [1, 16]. As shown in Figure 5(a), as the clutter power C
increases from 10 dB to 20 dB, PCA worsens. On the contrary, PMMR enhances as evident
in Figure 5(b). Especially when the whole right-half of the CFAR window is occupied
by clutter samples (i.e., n = 16) with clutter power C = 15 dB and 20 dB, the MMR
detector gives a nonhomogeneity detection probability of 70% and 90%, respectively, while
the CA-CFAR primary target detection collapses below 10%.
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Figure 5: PCA and PMMR with 2N = 32 at 10−6 false alarm rate for Scenario 3.

In summary, the MMR test complements the strength of a CA-CFAR detector, in the
sense that target-like samples in the reference window, which are blind to the CA-CFAR
and seriously degrade CA-CFAR performance, can be detected with higher probabilities
by an MMR test.

5.5 The MMR Test Using Large Reference Window

The use of the MMR test with CA-CFAR reference window size 2N = 32 can only detect
the presence of target-like samples that occupy up to half of the reference window. In this
section, the use of the MMR test with larger reference window sizes is examined.

Consider two reference windows with 2N=64 and 128. Using Monte-Carlo simulations
with 108 trials, the thresholds for the MMR test at FMMR = 10−6 are Tε(64) = 10.41 (for
reference window 64) and Tε(128) = 8.16 (for reference window 128).

As shown in Figure 6 for the case 2N = 64, PMMR is still comparable to PCA in the
presence of 39 target-like samples. In Figure 7 for the case 2N = 128, PMMR is still
better than PCA in the presence of 90 target-like samples. It is observed that the MMR
test is better when applied to a larger reference window in the sense that the presence of
a larger number of target-like samples can be detected. However, the uncertainty in the
whereabouts of those target-like signals in the reference window is also larger. Note that
the MMR test only detects the presence of target-like signals, while which samples are
target-like is unknown.
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Figure 6: PMMR with 2N = 64 at 10−6 false alarm rate for Scenario 1.

6 Discussions

In this section, performance of the MMR test is explained, followed by a comparison with
other existing nonhomogeneity detection methods.

6.1 The MMR Test

The key point of the MMR nonhomogeneity detection is the increase in the mean µ of the
samples in Ω due to target-like samples. Such an increase can be detected by observing
the gap between the mean µ1 of the large samples in Ω1 and the mean µ0 of the small
samples in Ω0 as dictated by the MMR thresholding test (7).

When there are no target-like samples in Ω, there is an approximately equal proportion
of the number of the smaller samples in Ω0 and the number of the larger samples in Ω1.
The ratio µ1/µ0 is also small since it is the ratio of the mean of the larger noise samples
to the mean of the smaller noise samples. In the presence of a few target-like samples
with significant SNR (for instance, σ > 15 dB), the mean µ of the samples in Ω increases
considerably due to the total sum of the power of the target-like samples. Therefore, fewer
but considerably larger samples are sorted to Ω1, and more small samples are sorted to
Ω0. The result is that the ratio µ1/µ0 increases significantly, leading to a much better
detection probability PMMR.

As the target-like samples occupy more than half of the CFAR window (m ≥ 17 in
Figure 3(c)), the set Ω becomes more ‘homogeneous’ in the sense that it now contains
more large target-like samples than the small noise samples. As a result, there is a high
probability that some of these large target-like samples are sorted to Ω0. This leads to an
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Figure 7: PMMR with 2N = 128 at 10−6 false alarm rate for Scenario 1.

increase in the mean µ0, which in turn makes the ratio µ1/µ0 smaller. Therefore, PMMR

deteriorates.

6.2 Comparison with Other Nonhomogeneity Detectors

In this section, performance of the MMR test is compared with those of representative
nonhomogeneity detection algorithms reported in [16], [15], [17], [18], and [19].

In [16], Barboy et. al. proposed an algorithm for detecting and censoring of nonho-
mogeneous samples as follows.

• The sum of 2N reference samples is formed:

S2N = x1 + x2 + · · ·+ x2N (12)

• Each reference sample is then compared with a threshold b1 computed as:

b1 = α0S2N (13)

Samples which exceed this threshold are discarded from the sum and a new sum
is formed from the rest of the reference samples. A new threshold b2 is formed by
multiplying this new sum with a new multiplier α1.

• The thresholding procedure then continues until no reference samples survive the
subsequent thresholding tests.

For this algorithm, the nonhomogeneity detection probability is determined by the
probability that at least one reference sample survives the first thresholding test. The

12 UNCLASSIFIED
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reason is that if none of the reference samples survives the first thresholding test, then the
procedure ends.

In [15], Hinomas et. al. proposed a similar nonhomogeneity detection and censoring
algorithm in which the detection of nonhomogeneous samples is performed on a cell-by-
cell basis using a maximum likelihood estimation method. The difference is that in the
Hinomas algorithm, the reference samples are first sorted in ascending order based on their
amplitudes before the application of the detection operation.

Consider a reference window of 2N = 16 samples, and assume that there are 3 target-
like samples in the reference window. For Scenario 1 with a false alarm rate of 10−4,
the nonhomogeneity detection probabilities given by the Barboy detector, the Hinomas
detector, and the MMR detector are shown in Figure 8. It is evident that the MMR
test gives the highest nonhomogeneity detection probabilities when the target-like SNR
is greater than 10 dB. Although not shown here, it is found that, when the number
of target-like samples increases further from 3 to 8 (i.e., occupying up to half of the
CFAR window), the MMR detection probability increases while the Barboy and Hinomas
detection probabilities decrease. Note that none of these three algorithms rely on the
assumption that the target-like samples are confined to one side of the test cell.

In terms of computational complexity, the MMR detector is simpler for implementation
in comparison with the Hinomas detector since no sample ordering is required in the MMR
algorithm. There are three sample means to be computed in the MMR algorithm (µ, µ0,
and µ1), while the Barboy detector requires the computation of only one sample mean.
However, the MMR detector has only one stage detection, while the Barboy detector relies
on an iterative procedure.

Compared with other nonhomogeneity detection algorithms such as those proposed in
[17] (heterogeneous clutter estimation algorithm), in [18] (using the Mann-Whitney test),
and in [19] (second-order statistic with leading-lagging mean ratio), an advantage of the
MMR algorithm is that the assumption of homogeneity between two clutter changes is
relaxed.

In summary, the MMR algorithm gives better nonhomogeneity detection performance,
is simple for implementation since no sample ordering is required, and does not require
that target-like samples are confined to only one side of the test cell. The information that
is not given by the MMR detector is the exact locations of the target-like samples within
the CFAR window. However, once the MMR test is passed, the samples in the set S1 can
be deduced as target-like samples. This topic will be elaborated in a later publication.

7 Conclusions

In this report, a new detection method designated as the MMR test is proposed to detect
the presence of target-like samples in CFAR reference windows. Unlike other existing
CFAR algorithms that attempt to censor the potentially contaminated samples, the pro-
posed MMR test focus on the detection of nonhomogeniety itself prior to the application
of any censoring operation. Based on Rayleigh noise and Swerling I target models, it is
demonstrated that the contaminated reference samples which seriously degrade the CA-
CFAR performance will be detected with much higher probabilities using the MMR test.
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Figure 8: Comparison of three nonhomogeneity detectors at false alarm rate 10−4, with
three target-like samples in the reference window.

In other words, the proposed MMR detectors have a performance which complements that
of the CA-CFAR detector in the presence of signal contamination. Such a characteristic
has not been achieved by any other existing CFAR detectors.
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